Taq DNA Polymerase (Mg²⁺ free buffer)

P102

Version 21.1

产品概述

本产品由克隆有*Thermus aquaticus* DNA Polymerase基因的大肠杆菌表达并经过多步纯化精制得到,不含核酸内切酶、核酸外切酶以及细菌DNA。Taq DNA Polymerase具有5'→3'聚合酶活性和5'→3'外切酶活性,但无3'→5'外切酶活性。PCR产物的3'端带A,可克隆至T载体,并适用于ClonExpress和拓扑克隆试剂盒(Vazyme #C112/C113/C115/C601)。

产品组分

组 分	P102-01 (1,000 U)	P102-02 (5,000 U)	P102-03 (10,000 U)
10 × Taq Buffer (Mg ²⁺ free)	4 × 1 ml		
25 mM MgCl ₂	4 × 1 ml	5 × P102-01	10 × P102-01
Taq DNA Polymerase (5 U/μl)	200 μΙ		

保存条件

-30 ~ -15℃保存, ≤0℃运输。

适用范围

本产品广泛适用于动物、植物以及微生物等DNA的扩增反应。

单位定义

用活化的大马哈鱼精子DNA作为模板/引物,74°C 30 min内,摄入10 nmol的全核苷酸为酸性不溶物的活性定义为1个活性单位(U)。

质量控制

核酸外切酶残留检测: 10 U的本酶和0.6 μg λ-Hind III在37°C下孵育16 h, DNA的电泳谱带不发生变化。

核酸内切酶残留检测: 10 U的本酶和0.6 µg Supercoiled pBR322 DNA在37℃下孵育4 h, DNA的电泳谱带不发生变化。

RNase残留检测: 10 U的本酶和1 μg HeLa细胞总RNA在37°C下孵育1 h, RNA的电泳谱带不发生变化。

大肠杆菌基因组残留检测: 10 U本品中残留的核酸经E.coli 16S rDNA特异性的TagMan gPCR检测, E.coli基因组残留低于10拷贝。

功能检测:50 μ l PCR体系中加入1.25 U本酶,以100 ng人基因组DNA为模板扩增 α -1-antitrypsin gene。30个循环后将1/10 PCR产物进行 1%琼脂糖凝胶电泳,EB染色,可见有单一的360 bp条带。

注意事项

操作注意事项

由于Taq DNA Polymerase在室温下也有一定的反应活性,PCR反应体系请在冰上进行配制,之后再置于PCR仪上进行反应。这样可以减少在反应准备阶段发生的非特异扩增,有助于得到高特异性的扩增结果。

引物设计

- 1. 引物3端最后一个碱基最好为G或者C;
- 2. 引物3端最后8个碱基应避免出现连续错配;
- 3. 引物3端应避免出现发夹结构;

- 4. 正向引物和反向引物的Tm值相差不超过1℃为佳,Tm值调整至55~65℃为佳(引物Tm值推荐使用Primer Premier 5进行计算);
- 5. 引物额外附加序列, 即与模板非配对序列, 不应参与引物Tm值计算;
- 6. 引物的GC含量控制在40% 60%之间;
- 7. 引物A、G、C、T整体分布要尽量均匀,避免使用GC或者AT含量高的区域;
- 8. 避开引物内部或者两条引物之间有5个碱基以上的互补序列,两条引物的3端避免有3个碱基以上的互补序列;
- 9. 引物设计完毕请使用NCBI BLAST功能检索引物特异性,以避免非特异性扩增产生。

实验流程

反应体系

ddH ₂ O	То 50 µl
10 × Taq Buffer (Mg ²⁺ free)	5 µl
25 mM MgCl ₂ ^a	x µl
dNTP Mix (10 mM each)	1 µl
Primer1 (10 µM)	2 µl
Primer2 (10 µM)	2 µl
Template DNA ^b	x µl
Taq DNA Polymerase (5 U/μΙ) ^c	0.5 μΙ

[▲]当扩增片段GC含量>60%且优化条件也无法正常扩增时,推荐使用PCR Enhancer(Vazyme #P021)来优化PCR反应。

b. 不同模板最佳反应浓度不同, 下表为50 µl反应体系推荐模板使用量:

动植物基因组DNA	0.1 - 1 µg
大肠杆菌基因组DNA	10 - 100 ng
cDNA	1 - 5 µl(不超过PCR反应总体积的1/10)
质粒DNA	0.1 - 10 ng
λDNA	0.5 - 10 ng

c. 酶量可在0.25 - 1 µl之间调整。加大酶量在通常情况下可以提高扩增产量,但有可能会使特异性下降。

反应程序

95°C	3 min (预变性) ^a	
95°C	15 sec)
60°C ^b	15 sec	30 - 35 cycles
72°C	60 sec/kb	J
72°C	5 min (彻底延伸)	

a. 该预变性条件适合绝大多数扩增反应,可根据模板结构复杂程度修改。如模板结构复杂,可将预变性时间延长至5 - 10 min以提高预变性效果;

a. 对于大多数PCR反应, Mg^{2*} 最佳终浓度为1.5 - 2 mM,即50 μ I反应体系中加入3 - 4 μ I 25 mM $MgCl_2$ 。如有需要,可用25 mM $MgCl_2$ 以0.2 - 0.5 mM为间隔摸索 Mg^{2*} 最佳使用浓度。

b. 退火温度需要根据引物的Tm值进行调整,一般设置成低于引物Tm值3~5°C即可;对于复杂模板,需要调节退火温度和延长延伸时间来实现高效扩增。